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Abstract
We present upper and lower bounds to the relative entropy of entanglement of
multi-party systems in terms of the bi-partite entanglements of formation and
distillation and entropies of various subsystems. We point out implications of
our results to the local reversible convertibility of multi-party pure states and
discuss their physical basis in terms of deleting information.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

The quantification of entanglement is a long standing problem in quantum information theory
[1]. Early work in this field focused on bi-partite entanglement, but in this paper we address
the problem of quantifying entanglement for multi-party systems. This is an interesting and
complex issue since it is not always evident how the existing measures for bi-partite systems
can be generalized to the multi-partite case. The three most promising ideas for quantifying
entanglement of multi-party systems are the entanglement of distillation [2], the entanglement
of formation [2–4] and the relative entropy of entanglement [5–9]. In the bi-partite setting,
the meaning of both entanglement of formation and the entanglement of distillation is quite
clear. However, these two measures do not have an entirely straightforward meaning when
one considers multi-partite entanglement. Let us consider the entanglement of distillation
first. This would be the number of ‘maximally’ entangled states that the parties could distill
asymptotically by local operations and classical communication (LOCC) from a given multi-
party state. The central issue here is the definition of maximally entangled states, i.e. to what
maximally entangled states should one distill. In the multi-partite setting this question has not
found an answer yet, and it is indeed not clear what this answer would be. In the bi-partite case
a maximally entangled state is the one that allows to obtain any other pure state with certainty
by LOCC and, in fact, it can be shown that the conversion is asymptotically reversible. For
more than two qubits no such single pure state exists and it is unknown whether there is a finite
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set of states with this property [10–12]. For three-qubit pure states one may believe that the
minimal set from which every other pure state can be generated reversibly consists of GHZ
and EPR states and it would then be reasonable to denote this set as the ‘maximally entangled
set’ to which everything else should be distilled. However, it is not known whether the set
of GHZ and EPR states is indeed sufficient to generate any other pure state asymptotically
reversibly and there are indications that further states have to be added [13]. The same issues
appear when we talk about the entanglement of formation. This measure tells us how many
maximally entangled states the parties have to sharea priori to be able to asymptotically create
a given mixed state by LOCC.

In general, we would hope that at least for pure states there is a minimal reversible
entanglement generating set (MREGS), to which all multi-party states can be distilled and
from which all of them can be reversibly created. As these sets are currently unknown and
may be very complex, we would like to avoid them and instead use the relative entropy of
entanglement. This measure can easily be generalized to multi-party states. Since for bi-partite
systems the relative entropy of entanglement is an upper bound to distillable entanglement we
would expect this to be the case in general.

We now proceed to show that this intuition is indeed correct and derive various upper and
lower bounds of the relative entropy of entanglement for general multi-party states in terms of
the bi-partite entanglements of formation and distillation and entropies of various subsystems.
We discuss the physical meaning of our bounds in terms of deleting information and present
some relevant applications.

2. The relative entropy and entanglement: definitions and useful formulae

In this paper we will employ a particular measure of entanglement which is commonly called
the relative entropy of entanglement [5–9]. This measure can be defined for an arbitrary
number of parties by the following formula

E(σ) = minρ∈DS(σ‖ρ) (1)

whereD is a set of disentangled (separable) states and whereS(σ‖ρ) = tr{σ logσ − σ logρ}
is the quantum relative entropy [14]. For the purpose of this paper, we assume thatD is the
set of the states that can be created locally, i.e. it isfully separable. Also, byEn(σ) we will
always denote the relative entropy of entanglement forn-party systems with respect to the set
of fully separable states.

In any application that requires operations on a large number of copies the regularized
version of the above entanglement measures are useful. These are defined as

E∞(σ ) = lim
n→∞

E(σ⊗n)
n

. (2)

Many of the results in this paper are based on the following inequality [9] that holds true
for any stateσAB and any separable stateρAB of two parties.

S(σAB‖ρAB)− S(σA‖ρA) � S(σA)− S(σAB). (3)

This inequality can be generalized directly to multi-partite entangled systems. For tri-partite
systems, for example, we find that for any stateσABC and any tri-separable stateρABC , the
following inequality

S(σABC‖ρABC)− S(σAB‖ρAB) � S(σAB)− S(σABC) (4)

is satisfied. We now show how to use this result to derive upper and lower bounds on the
relative entropy of entanglement of many-party states.
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3. Bounds on the relative entropy of entanglement

The aim of this section is the derivation of upper and lower bounds of the relative entropy of
entanglement forn parties in terms of the relative entropies for smaller numbers of subsystems.
We begin by considering pure tri-partite states and later generalize the results to the case of
arbitrarily many subsystems.

Theorem 1. For any pure tri-partite states σABC we find

max
{
E∞

2 (σAB) + S(σAB),E∞
2 (σAC) + S(σAC),E∞

2 (σBC) + S(σBC)
}

� E∞
3 (σABC) (5)

E∞
3 (σABC) � min{S(σA) + S(σB), S(σA) + S(σC), S(σB) + S(σC)} (6)

and

max{E2(σAB) + S(σAB),E2(σAC) + S(σAC),E2(σBC) + S(σBC)} � E3(σABC). (7)

Proof. We begin with the proof of the inequality (5). We will employ the fact thatE3 is an
entanglement monotone, i.e. it does not increase under local operations. Consider now three
parties A, B and C that wish to create an arbitrary pure quantum stateσABC . One possible
procedure is that Alice creates the state locally and then compresses the particles that should
go to Bob (with efficiencyS(σB)) and those that should go to Charles (with efficiencyS(σC))

and then usesS(σB) shared singlets between herself and Bob andS(σC) shared singlets
between herself and Charles to teleport these particles to them. Therefore they have consumed
S(σC) + S(σB) ebits in total to create this state. As we know thatE3 is an entanglement
monotone, we find

E∞
3 (σABC) � S(σB) + S(σC). (8)

Permuting the indices cyclically we find the sharpest bound

E∞
3 (σABC) � min{S(σA) + S(σB), S(σA) + S(σC), S(σB) + S(σC)}. (9)

Let us now proceed to prove inequality (6). This can easily be performed using equation
(3). Given a pure stateσABC , we obtain from this inequality that

S(σABC‖ρABC) � S(σAB‖ρAB) + S(σAB). (10)

If we replaceρABC by the closest tri-separable state toσABC which we denote byρ∗
ABC then

we find

E3(σABC) = S(σABC‖ρ∗
ABC)

� S(σAB‖ρ∗
AB) + S(σAB) (11)

where ρ∗
AB ≡ trC{ρ∗

ABC}. As ρ∗
AB is evidently separable we immediately have that

S(σAB‖ρ∗
AB) � E2(σAB) so that

E3(σABC) = S(σABC‖ρ∗
ABC)

� E2(σAB) + S(σAB). (12)

If we permute the indices cyclically we get three inequalities and obtain the sharpest bound

E3(σABC) � max{E2(σAB) + S(σAB),E2(σAC) + S(σAC),E2(σBC) + S(σBC)}. (13)

In a completely analogous way we obtain the bound (7) for the regularized relative entropy of
entanglement. �
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Corollary. For any pure tri-partite states σABC we find

2
3(S(σA) + S(σB) + S(σC)) � E∞

3 (σABC)

� 1
3

(
E∞

2 (σAB) +E∞
2 (σAB) +E∞

2 (σAB) + 1
3(S(σA) + S(σB) + S(σC)

)
(14)

Proof. The corollary follows directly from the inequalities stated in the theorem by taking the
average over all combinations of two parties. �

One may wonder for which states the bounds presented in the theorem and the corollary
are saturated. While we do not have a general answer to this question, it is straightforward
to show that both inequalities (5) and (6) are saturated for GHZ-like states(α|000〉 + β|111〉
or local unitary transformations) and any bi-partite pure state (where the third subsystem is
disentangled from the first two). For theW-state given by|W 〉 = (|100〉 + |010〉 + |001〉)/√3
we find that the lower bound (6) is saturated only as we findE3(W) = 2 log 3−2 [15]. In fact
for all states of the form|ψ〉 = e|100〉 + f |010〉 + f |001〉 [13] we find that the upper bound
(6) is not saturated.

It would be interesting to know whether the upper bound presented in the corollary can
be sharpened further to

E3(σABC) � 1
2 (S(σA) + S(σB) + S(σC)) (15)

We have no counter-example but no proof of this conjecture either. It is, however, clear that
the coefficient in front of the entropies cannot be sharpened further because this upper bound
is saturated by, for example, EPR states and GHZ states.

The inequalities we have presented here for tri-partite systems generalize straightforwardly
to more than three parties. This is obtained by first generalizing the inequality (4) ton systems
and then following the steps leading up to (5) and (6).

4. Reversible entanglement manipulation and the relative entropy of entanglement

It is interesting to note that a small modification of the lower bound presented in theorem 1
actually becomes an equality for pure multi-partite states under some further assumptions
which we review now. First of all we will have to replace the relative entropy of entanglement
by its regularized version, i.e.

E∞
3 (σ ) = lim

n→∞
E3(σ

⊗n)
n

. (16)

Furthermore let us make the (unproven) assumption that the set of GHZ and the three possible
EPR’s forms what we called a MREGS. If this is so, then the following equations must be
satisfied [11]:

S(σA) = g + sAB + sAC (17)

S(σB) = g + sAB + sBC (18)

S(σC) = g + sAC + sBC (19)

E∞
2 (σAB) = sAB (20)

E3(σABC) = g + sAB + sAC + sBC (21)

whereg is the number of GHZs andsAB is the number of singlets between A and B, and so
on. For the derivation of the first four equations see [11] and [13] for a slight modification.
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The last equality follows from the fact thatE∞
3 is an entanglement monotone. Given these

equations we immediately find that

E∞
3 (σABC) = 1

3

(
E∞

2 (σAB) +E∞
2 (σAB) +E∞

2 (σAB)
)

+ 1
3 (S(σA) + S(σB) + S(σC)) . (22)

This equality has an interesting physical interpretation. Namely, it states that the entanglement
of three subsystems is equal to the entropy due to deleting one of the subsystems plus
the remaining entanglement between the other two subsystems, finally averaged over all
three subsystems. This interpretation of multi-party entanglement is interesting because it
combines the idea of the persistent entanglement due to loss of classical information [16, 17]
with Landauer’s notion of deleting information and increasing entropy [18]. The persistent
entanglement tells us how much entanglement is left when we erase information in a particle
and Landauer’s erasure tells us the entropy increase due to this erasure. Their sum gives the
total entanglement.

5. Discussion and conclusions

We have discussed in this paper how to generalize the relative entropy of entanglement to
states involving more than two parties. Furthermore we have argued that this measure has a
very natural generalization to multi-party states, while the entanglement of formation and the
entanglement of distillation cannot be so easily generalized. In spite of this advantage of the
relative entropy of entanglement, however, it is still very difficult to compute this quantity and
no ‘closed formula’ exists even for bi-partite states. It is therefore very important to provide
upper and lower bounds for the relative entropy of entanglement which is the main result of
this paper. We have also discussed the states which saturate either the upper or the lower
bound. Finally, we have discussed the circumstances under which the lower bound becomes
an equality and related this to Landauer’s notion of information deletion and entropy increase.
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